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Abstract. Symmetries of nonlinear reaction-diffusion equations determine the existence of
regular rotating spiral waves. They are only a consequence of kinetics processes and molecular
diffusion. We prove the existence of these waves as invariant solutions of reaction-diffusion
models with appropiate Lie point symmetries.

1. Introduction

Nonlinear reaction-diffusion equations have been widely studied. These equations arise
naturally as description models of many evolution problems in the real world, as in chemistry
[1], biology [2], ecology [3], etc. Sometimes models not related directly to nature have
been proposed with the main object of finding various kinds of cooperative behaviour, as
is the case of the so-called tri-molecular model of Lefever and Prigogine [4].

Among the structures which can be found in systems modelled by reaction-diffusion
equations we must mention regular rotating spiral patterns. They occur in a wide variety
of biological, physiological and chemical contexts, and the Belousov–Zhabotinskii reaction
[5–7] provides a classic example.

The mathematical study of spirals in excitable media has followed several approachs.
Some authors [8–12] have found asymptotic solutions which represent spiral waves far from
a fixed origin. The far field of the spiral is viewed as a modification of periodic plane waves,
but no analysis is given to show that these asymptotic spirals correspond to solutions that
are smooth at the origin. In this approach, arguments have been advanced that additional
kinematic rules must be present to produce and possibly maintain spiral waves in the core
of the spiral.

For a certain class of models some authors [13] have demonstrated that rotating
logarithmic spiral waves can be maintained by reaction and diffusion alone. They proved
the existence via the Schauder fixed point theorem applied to a certain class of theλ − ω
systems introduced by Kopell and Howard [14]. The importance of these models lies in
the fact that they arise naturally as the dominant part in the asymptotic analysis of many
general reaction-diffusion systems [13].

One-armed Archimedian spiral waves were obtained by Greenberg [15], and Hagan [16]
obtained both one-armed and multi-armed Archimedian spiral waves. They used formal
asymptotic expansions methods for two different classes ofλ− ω systems.
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Another aproach [17, 18] makes use of singular perturbation theory to examine the
detailed motion of spiral interfaces between excited and recovering regions. The analysis
results in a free-boundary problem for the shape and frequency of rotation of the spiral.
Although this reduced problem is still unsolved in general, recently Keener [19] has solved
this free-boundary problem in the special case where the spiral is rotationally symmetric.
These spirals arise when the excitable medium is described by antisymmetric dynamics.

This paper deals with the application of Lie group theory to nonlinear reaction-diffusion
systems ofλ−ω type. Although group analysis of differential equations has been applied a
great deal in many fields of mathematical physics [20–24], much less analysis has been used
in connection with reaction-diffusion systems. In a previous paper [25] we have applied
Lie theory of transformation groups to the study ofλ − ω reaction-diffusion systems in
two-dimensional media. Our study proves that they are invariant with respect to a five-
parameter symmetry group. Multiple types of invariant solutions with physical interest are
possible and spiral waves are among them.

A λ−ω model that has been extensively studied was proposed by Smoes and Dreitlein
[26] with the aim of finding the local dissipative structures observed in the Belousov–
Zhabotinskii reaction. For this model, some analytic solutions were obtained for the case
of one spatial variable [26, 27]. These results were later obtained using Lie group theory as
special cases of more general solutions by Steeb and Strampp [28]. Previously, numerical
solutions were obtained for the case of two spatial variables [29], showing some classes of
dissipative structures.

With the use of Lie group theory for the case of two spatial variables we demonstrate
the existence of different types of rotating spiral waves . We can prove analytically the
regularity at the origin for some of them. A similar method has been used by Greenberg [15]
with a different system. We have also studied numerically the regularity of other solutions.

The regularity of the solutions implies that there is no need to add additional kinetics
to produce the waves in the core of the spiral. Also, the potentiality of the method suggests
the application to many models of reaction-diffusion systems.

2. Reaction–diffusion models

We consider models described by systems of partial differential equations (SPDE) of the
form

∂u1

∂t
= D∇2u1+ f (u1, u2)

∂u2

∂t
= D∇2u2+ g(u1, u2)

(1)

whereu1 = u1(x, y, t), u2 = u2(x, y, t) represent, for example, relative concentrations, i.e.
deviations with respect to mean values, of two chemical reactants or relative populations
of two biological species, and can take negative values. They diffuse through the plane
(x, y) and react with kinetics given by the nonlinear functionsf (u1, u2) andg(u1, u2). D
represents the diffusion coefficient, which can be made equal to 1 after a suitable rescaling
of (x, y).

The Dreitlein–Smoes model, which is analysed in some detail in this paper, is obtained
as a consequence of a particular kinetics of some chemical reactants.
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In a recent paper [25] the authors show that system (1) is aλ− ω system if, and only
if, it is invariant under a Lie group of transformations [21], with characteristics

Q1 = a1u1x + a2u1y + a3u1t + a4(xu1y − yu1x )+ a5u2

Q2 = a1u2x + a2u2y + a3u2t + a4(xu2y − yu2x )− a5u1

(2)

where the set{ai}5i=1 represents arbitrary constants.
The λ − ω reaction-diffusion systems with two reactants are described by systems (1)

with f and g of the form f (u1, u2) = λ(z)u1 − w(z)u2; g(u1, u2) = ω(z)u1 + λ(z)u2,
wherez2 = u2

1+ u2
2.

Usually,λ(z) is supposed to be a positive function ofz for 06 z < z0 and negative for
z > z0. Also, ω(z) is supposed to be a positive function ofz, in order to assure that the
model, without diffusion, has a limit cycle with amplitudez0 and frequencyw(z0). Thus,
λ − ω systems have been proposed as models for chemical or biological systems which
exhibit oscillating behaviour in homogeneous situations.

Each mono-parametric subgroup is associated with a set of determined constants{ai}5i=1.
Invariant solutions with respect to different subgroups of the full group exhibit a great

variety of patterns, and spiral wave patterns are among them.
In this paper we are interested in the question about the existence of regular rotating

spiral waves. These waves are invariant with respect to rotations with phase shift and are
also time-periodic. Then, we must look for the characteristics associated with these groups.
It is easy to see that they correspond to the casesa1 = a2 = a3 = 0, anda1 = a2 = a4 = 0.

We denote these groups byG45 andG35, respectively. Their characteristics are given by

Q1
45 = a4(xu1y − yu1x )+ a5u2 Q2

45 = a4(xu2y − yu2x )− a5u1

Q1
35 = a3u1t + a5u2 Q2

35 = a3u2t − a5u1.
(3)

It is clearly appropriate to use polar coordinates. That is, we introduce the set of
variables(r, θ) and(z, φ), where

x = r cos(θ) y = r sin(θ)

u1 = z cos(φ) u2 = z sin(φ).

Thus, z represents theamplitudeandφ the phaseof the wave. This change of variables
gives rise to considerable simplification of the characteristics. We easily obtain

Qz
45 = a4zθ Q

φ

45 = a4φθ − a5

Qz
35 = a3zt Q

φ

35 = a3φt − a5.
(4)

These characteristics are determinated except for a multiplicative constant. Then, it is
possible to choosea5 = 1, and in these new coordinates, system (1) reads

zrr + zr
r
+ zθθ
r2
− z

(
φ2
r +

φ2
θ

r2

)
+ zλ(z)− zt = 0

φrr + φr
r
+ φθθ
r2
+ 2φr

zr

z
+ 2

φθ

r2

zθ

z
+ ω(z)− φt = 0.

(5)

The characteristics associated to a group vanish for solutions which are invariant with
respect to this group. Thus, invariant solutions with respect toG45 must have the form

u1 = z(r, t) cos

(
θ

a4
+ β(r, t)

)
u2 = z(r, t) sin

(
θ

a4
+ β(r, t)

)
. (6)
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Since the concentrationsui must be continuous at all points in space, they must satisfy
ui(r, θ) = ui(r, θ + 2π). Hence, the possible values fora4 are of the form 1/n, with n an
integer, and solutions (6) take the form

u1 = z(r, t) cos(nθ + β(r, t)) u2 = z(r, t) sin(nθ + β(r, t)). (7)

These solutions are invariant with respect to phase rotations of amplitude 2π/n. If, in
addition, they are invariant with respect to the groupG35, solutions take the form

u1 = z(r) cos(nθ +�t + β(r)) u2 = z(r) sin(nθ +�t + β(r)) (8)

with � = 1/a3. Thus, Lie point theory of transformations permits us to establish in a
somewhat straightforward way whether the model admits spiral waves solutions. There is
no need to previously assume the existence of these type of solutions, as many authors do
when they are looking for solutions ofλ − ω systems. Of course there still remains the
problem of studying the solutions of (9) with physical content.

Substitution of (8) into (5) yields

zrr + zr
r
+ z

(
λ(z)− β2

r −
n2

r2

)
= 0 (9a)

βrr + βr
r
+ 2βr

zr

z
+ ω(z)−� = 0. (9b)

The wavefronts corresponding to equations (8) are not defined as curves withu1 and
u2 constant, because the functionz(r) could mask the shape of the spirals. They are better
defined as curves of constant phase, which are steadily rotating waves with angular frequency
ω0 = 1/na3. In any case, both definitions coincide for certain phases; for example, we may
consider the wavefronts, whereu2 = 0, with phase 2πm:

xm = r cos

(
− t

na3
− 1

n
β(r)+ 2π

m

n

)
ym = r sin

(
− t

na3
− 1

n
β(r)+ 2π

m

n

) (10)

with m = 0, 1, . . . , n− 1.
Equation (9b) suggests the convenience of first considering the case whereβ(r) is

constant.

2.1. β(r) constant

In this case the functionω(z) must also be a constant of value� = 1/a3. The wavefronts
are straight lines. This shape may not be seen as a spiral in the conventional sense, but
spiral waves are often defined as rotating, time-periodic, spatial structures [30], and this
shape is usually included among spirals [16].

An interesting model ofλ− ω type, withω = −2 constant is proposed by Smoes and
Dreitlein [26] with λ(z) = k − z2, wherek is a real parameter. From (9b) we observe that
a3 = − 1

2. Henceω0 = − 2
n

.
The reduced equation is

zrr + zr
r
+ z

(
k − n

2

r2
− z2

)
= 0. (11)

This equation is invariant with respect to the transformation

Zε =
√
εZ rε = r√

ε
kε = εk. (12)
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Figure 1. Plot of z(r), in the caseβ(r) constant, obtained by means of numerical integration
of equation (13) withαc = 0.583 1746.

Thus, the solutions for any value ofk > 0 may be obtained from the solutions fork = 1.
Hence, whenβ(r) is constant it is sufficient to study the equation

zrr + zr
r
+ z

(
1− n

2

r2
− z2

)
= 0. (13)

The solutions are rotating spirals with phase8 = nt +�t + β.
In the appendix we investigate the existence of one-armed spiral waves (n = 1), such

that z(r) is analytical inr = 0, and bounded forr →∞.
We are able to demonstrate analytically the existence of these types of solutions. The

following boundary conditions must be satisfied by solutions of equation (13) which are
regular at the origin

lim
r→0

z(r) = 0 lim
r→∞ z(r) = 1. (14)

For the caseβ(r) constant, we have found numerically the valueαc = 0.583 1746. In
figure 1 we plotz(r) obtained by means of the numerical integration of equation (13). The
associated solutionu1 = z(r) cos(θ − 2t) with t = 0 is represented in figure 2, and we can
see that the wavefronts are straight lines.

2.2. β(r) non-constant

The caseβ(r) non-constant is clearly more interesting from a physical point of view. A
monotonous functionβ(r) will produce the shape of conventional spiral waves observed in
many physical systems, as, for example, the Belousov–Zhabotinskii reaction. However, it
is not easy to find the appropriateλ(z) andβ(z), which allow bounded solutions for both
z(r) and βr(r). It is easy to see that a necessary condition is thatw(z(∞)) = �, and
that if w(z) = constant, as in the Dreitlein–Smoes model, there are no possible bounded
solutions forβ(r) non-constant [30]. However, divergent solutions forr →∞ should not
be disregarded. Many systems are proposed to model local dissipative structures and are not
necessarily supposed to be valid whenr →∞. That is the reason why we have done some
numerical integration forω(z) = � = −2. This integration also poses some problems.
First, equation (9a) is singular inr = 0, where the valuesz(0) = 0 andβr(0) = 0 are



4264 J F R Archilla et al

Figure 2. Spatial pattern of the concentrationu1, in the caseβ(r) constant, obtained by means
of numerical integration of equation (13) withαc = 0.583 1746. The horizontal and the vertical
axes are from−5

√
2 to+5

√
2.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

known. The procedure has been chosen to substitute a power series forz(r) andβr(r) in a
neighbourhood ofr = 0 in equations (9), and to find the relations among the first coefficients
up to order 3, using them to specify the initial conditions in function ofα = zr(0). Second,
as suggested by some numerical integration and the demonstration in the appendix for the
caseβ(r) constant, there are two different types of solutions. Divergent solutions forα

greater than certain valueαc, and oscillating solutions for smaller values ofα. We look for
solutions that are well behaved for relatively larger, although not for allr. Thus, we look
for initial conditions very near the critical valueαc. The results shown in figure 3 are for
β(0) = 0, βr(0) = 1, k = 1 and� − ω = −0.1. We have numerically found the value
αc = 0.579 889.

The associated solutionsu1, u2 are obtained through equations (8). Figure 4 represents
u1(x, y) with t = 0.

It is possible to find some systems withω(z) non-constant in the literature, which
allow bounded solutions for allr, as, for example, Greenberg [15], forλ(z) = 1− z and
ω(z) = 1+ ω1(z − 1), or Hagan [16], forλ(z) = 1− z2 andω(z) = qz2.

It is not the aim of this paper to find the general conditions forω(z) andλ(z) which
lead to bounded solutions, and this problem remains open.

3. Conclusions

The main aim of this article is to demonstrate the relation of certain Lie point symmetries
with the existence of rotating spiral waves in reaction-diffusion systems. Application of Lie
group theory to the study of nonlinear reaction-diffusion models may help to establish if
these kinds of structures are a consequence of only the kinetics processes and of molecular
diffusion, or if additional kinematics mechanisms must be present to produce them. Invariant
solutions of subgroups of the full symmetry group, i.e. partially invariant solutions [31], as
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Figure 3. Plot of z(r) andβ(r), obtained by means of numerical integration of system (9) with
β(0) = 0, βr (0) = 1, k = 1, �− ω = −0.1 andαc = 0.579 889.

Figure 4. Spatial pattern of the concentrationu1, obtained by means of numerical integration
of system (9) withβ(0) = 0, βr (0) = 1, k = 1, � − ω = −0.1 andαc = 0.579 889. The
horizontal and the vertical axes are from−5

√
2 to+5

√
2.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

the spiral waves studied in this paper, are usually of great interest, not only because of the
richness of patterns exhibited but also because, as they have a lower degree of symmetry than
the system, they are probably the emerging solutions in a spontaneous symmetry breaking
process [32].

Appendix A

In this appendix we briefly sketch, without technical details, the method used for obtaining
the characteristics ofλ− ω systems. A complete reference can be found in [21].
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Group of transformations

Let G be a local Lie Group,x = (x1, x2, . . . , xn) the set of independent variables, and
u = (u1, u2, . . . , um) the set of dependent variables, in a space of functionsu = u(x). A
local Lie group of transformations in the space(x, u) is given by the set of equations

xε = X(x, u, ε) uε = U(x, u, ε) (A1)

whereε is a continuous parameter of a local group, beingε = 0 the value of the parameter
for the identity element. The expression local means that the group properties are valid at
least in some neighbourhood ofε = 0. If the functionsX andU depend not only onx and
u but also on some derivatives, the transformations (A1) have no geometrical interpretation,
and must be seen as transformations in the space of functionsu(x). In this case they are
called generalized transformations.

Infinitesimals

For every transformation (A1) there is an infinitesimal transformation given by

δx = ξ(x, u)ε δu = η(x, u)ε (A2)

with ε small enough;ξ = (ξ1, ξ2, . . . , ξn) and η = (η1, η2, . . . , ηm) are called the
infinitesimals of the transformation and are given by

ξ =
(
∂X

∂ε

)
ε=0

η =
(
∂U

∂ε

)
ε=0

. (A3)

Characteristics

The characteristic of the transformation group is defined asQ = η − ξ iui . An equivalent
transformation [21] to (A1) that leaves thex variables invariant is given infinitesimally by

δu = Q(x, u, {ui})ε whereQ =
(
∂U

∂ε

)
ε=0

. (A4)

This is a generalized transformation which has an equivalent geometrical transformation.
The expression{ui} represents the set of derivatives∂uα/∂xi with α = 1, 2, . . . , m and
i = 1, 2, . . . , n.

We represent by{uI }, whereI = (i1, i2, . . . , in) is a multi-index, the set of derivatives,
given explicitly by the expressions

{uI } → ∂ |I |uα

∂x
i1
1 ∂x

i2
2 . . . ∂x

in
n

α = 1, 2, . . . , m |I | =
n∑
j=1

ij > 0.

The infinitesimal transformation foruI is given by

δuI = (DIQ)ε

whereDI is the total derivative operator

DI = ∂

xI
+ uI ∂

∂u
+
∑
J

uJ,I
∂

∂uJ
|J | > 0

with

∂

∂xI
= ∂ |I |

∂x
i1
1 ∂x

i2
2 . . . ∂x

in
n

.
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Invariant functions

A function u(x) is said to be invariant if it is left unchanged by the action of the
transformation group, that is∂uε/∂ε = 0, or equivalently

Q(x, u, {ui}) = 0. (A5)

Symmetry Group

A system of partial differential equations,

F(x, u, {uJ }) = 0 (A6)

is said to be invariant under a transformation group if every solutionu is transformed by the
group into another solutionuε , that is,F(x, uε, {uεI }) = 0. The corresponding infinitesimal
condition is

Q
∂F

∂u
+DI(Q)

∂F

∂uI
= 0 |I | > 0 (A7)

wheneveru is a solution of the SPDE.

Invariant Solutions

Invariant solutions are solutions of the SPDE that are invariant with respect to a symmetry
group. Then they must be solutions of equations (A5) and (A6). When the SPDE models a
physical system, invariant solutions are very often functions that exhibit interesting patterns
with physical interest.

Procedure

In order to find a symmetry group of a SPDE we first substitute the partial differential
equations into (A7). The resulting equations are treated as forms in the derivatives ofu,
whose coefficients depend on(u, x, t) and the infinitesimals(η, ξ). After the substitution
we collect together the coefficients of like derivative terms inu and set all of them equal to
zero. The resulting equations are called the determining equations of the group. In practice
these equations are solvable and thus the infinitesimals and characteristics of the group are
determined. The subsequent study is clearly shown in this paper.

Mathematical Packages

These calculations, though not difficult in themselves, are clearly complicated as the order
of the SPDE and the number of equations increase, so a software for symbolic mathematics
becomes useful. To our knowledge, the best package for these kind of calculations is
Macsyma. Programs written by the authors in Macsyma 4.0, running in a Convex, have
been used to get the results shown in this paper.

Appendix B

In order to solve the boundary value problem (13), (14), a ‘shooting’ technique is used. A
similar technique has been used by Greenberg [15] to study a differentλ− ω system with
λ(z) = 1− z.
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We study the solutions of (13) which satisfy initial conditions of the form

lim
r→0

z(r) = 0 lim
r→0

zr(r) = α (B1)

whereα > 0 is a constant. We have to demonstrate that for a certain value ofα, namely
αc, the corresponding solution of (13), is a solution of the problem (13), (14).

The first stage for our proof is the following:If z = z(r, α) is a solution of (13), (B1)
there exists a valuer1 > 0, such thatzr(r1) = 0.

We denote byB the set of valuesr0 > 0 with zr(r0) = 0 and we shall divide the proof
in several steps.

(1) B is not empty.
For r small enoughzrr is negative. This is easily seen by substituting the first terms of

the power series ofz in (13). If zrr never vanish, then 06 zr < α, for everyr > 0, and

0< zr = 1

r

∫ r

0
sz(s)

(
1

s2
− 1+ z(s)2

)
ds

6 1

r

∫ r

0
sαs

(
1

s2
− 1+ α2s2

)
ds = α − α

3
r2+ α

3

5
r4. (B2)

The discriminant of this polynomial isα
2

9 − 4
5α

4, which is positive for small enoughα.
Hence, the polynomial in (A2) is negative for some values ofr and, for small enoughα,
zr always vanish for somer0.

(2) B is bounded below by 0, and the infimum ofB must be different from 0.
If that infimum is 0 then limzr(r) = 0 for r → 0 andr ∈ B, the solutionz ≡ 0 would

be obtained. We shall denoter1 = r1(α) ≡ inf(B) > 0.
(3) r1 > 1.
Equation (13) may be written as

(rzr)r + rz
(

1− 1

r2
− z2

)
= 0. (B3)

The mean value theorem implies that there exists a valuer ′ = r ′(r) with the property

zr(r) = 1

r

∫ r

0
tz(t)

(
1

t2
− 1+ z(t)2

)
dt = r ′

r
z(r ′)

(
1

r ′2
− 1+ z(r ′)2

)
(B4)

where 0< r ′ < r. For r = r1, zr = 0, this equation reads

z(r ′1)
(

1

r ′21

− 1+ z(r ′1)2
)
= 0 (B5)

where 0< r ′1 < r1. If z(r ′1) = 0, Rolle’s theorem implies that there existsr ′′ < r ′1 < r1
such thatzr(r ′′) = 0, which is in contradiction with the definition ofr1. Hence

1

r ′21

− 1+ z(r ′1)2 = 0. (B6)

This equation implies thatr ′1 > 1 and, therefore,r1 > 1.
(4) 0< z(r) < 1 for 06 r 6 1.
According to the definition ofr1, z(r) is an increasing function in [0, r1].
Hence,zrr (r1) 6 0, and from equation (B3) we obtain

zrr (r1)

(
1

r2
1

− 1+ z(r1)2
)
< 0. (B7)

Sincer1 > 1 , this equation implies that

0< z(r) < 1 for 06 r 6 r1. (B8)
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(5) r1 grows withα.
We prove that dr1/dα > 0. By definition, zr(r1(α), α) ≡ 0. Differentiating this

expression with respect toα we obtain

zrr (r1(α), α)
dr1(α)

dα
+ ∂zr
∂α
(r1(α), α) = 0. (B9)

Sincezrr (r1(α), α) < 0, it is enough to prove that∂zr
∂α
(r1(α), α) > 0.

Let us consider the functionA(r) = ∂z
∂α
(r, α), wherez = z(r, α) satisfies (13), (B1).

A(r) is a solution of the initial condition problem obtained by differentiating the first member
of (B3) with the initial conditions (B1)

(rAr)r + rA
(

1− 1

r2
− 3z2

)
= 0

A(0) = 0 Ar(0) = 0.
(B10)

If we prove thatAr(r1) > 0, then we would obtaindr1(α)/dα > 0, and our assertion would
be verified. Although this equation is not linear, our proof may be carried out by using
Sturn’s technique on the study of the distribution of zeros in solutions of second-order linear
differential equations. We multiply equation (B3) byA(r) and equation (B10) byz(r) and
subtract the resulting equations.

Since(rzr)r − (rAr)r ≡ [r(zrA− zAr)]r , we obtain the following relation:

[r(zrA− zAr)]r + rAz(2z2) = 0. (B11)

Let r2 be the first positive zero of the functionA(r). ThenA(r) > 0 in (0, r2), and
A′(r2) 6= 0. If we have thatz(r) > 0 in (0, r2) then, from (B11), we would obtain
[rzrA− zAr)]r < 0 in (0, r2) . The integration of the first term of this relation over(0, r2)
yields the relation

r2[zr(r2)A(r2)− z(r2)Ar(r2)] = −r2z(r2)Ar(r2) < 0 (B12)

and thenz(r2) < 0, which is in contradiction withz(r) > 0 in (0, r2). Hence,zr changes
its sign in (0, r2), and there exists ar0 in (0, r2) where zr vanish. This proves that
r1 = r1(α) < r2, andA(r1) = ∂z

∂α
(r1) > 0. Since the second additive term in (B11) is

strictly positive in (0, r1), the first one must be strictly negative. The integration of this
over (0, r1) yields

r1zr(r1)A(r1)− z(r1)Ar(r1) < 0. (B13)

Hence, sincezr(r1) = 0, z(r1)Ar(r1) > 0 andA(r1) > 0. Therefore,dr1(α)
dα

> 0.

(6) In this step we proceed to study the system with boundary conditions (14).
Since r1 increases withα, we may consider the setR = {α : r1(α) < ∞}. We shall

prove below thatR is bounded above. In this case, ifαs = sup(R):

lim
α→α+s

r1(α) = 0 lim
α→α+s

r2(α) = ∞

and, as a consequence of (B8), the following relations are satisfied whenr > 0:

0< z(r, αs) < 1 0< zr(r, αs) lim
r→∞ zr(r, αs) = 0. (B14)

Considering equations (B3) forr →∞ , we obtain limr→∞ zrr (r, αs) = 0. Therefore,
since

lim
r→∞ z(r, αs) = 1 (B15)
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R is bounded above and the functionz = z(r, αs) is the solution of (13), (14). In order to
prove thatR is bounded above a separation technique is used.

Equation (12) may be compared with the Bessel equation:

[rJ zr − rzJr ]r = rJ z3. (B16)

Solutions of (12) are positive in(0, j1), wherej1 the first positive zero ofJ .
Sincez vanishes in that interval,J will change its sign in it. This proves that the second

term of (B4) is positive in(0, j1) and, therefore, forr ∈ (0, j1) we have∫ r

0
[sJ (s)zr(s)− sz(s)Jr(s)] ds = rJ zr − rzJr > 0. (B17)

HenceJzr−zJr is positive in(0, j1) and, as a consequence,(z/J )′ > 0, i.e.z/J is positive
in (0, j1). Since limr→0

z(r)

J (r)
= α, J increases in(0, j2), where j2 is the first positive

zero of Jr . The conclusion is that for great enoughα, z(r) can be arbitrarily large and
zr never vanish. Therefore, for great enoughα, z is a function monotonical divergent to
+∞. We have demonstrated that there exist solutionsz(r, α), of (13), (14) which are both
monotonical increasing and bounded.
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